5

10

15

FP03-0042-00

CLAIMS

A substrate dividing method comprising the steps 1. of:

irradiating a substrate with laser light while positioning a light-converging point within the substrate, so as to form a modified region due to multiphoton absorption within the substrate, and causing the modified region to form a starting point region for cutting along a line along which the substrate should be cut in the substrate inside by a predetermined distance from a laser light incident face of the substrate; and

grinding the substrate after the step of forming the starting point region for cutting such that the substrate attains a predetermined thickness.

- A substrate dividing method according to claim 2. 1, wherein the substrate is a semiconductor substrate.
 - A substrate dividing method according to claim 2, wherein the modified region is a molten processed region.
- A substrate dividing method according to claim 1, wherein the substrate is an insulating substrate. 20
 - A substrate dividing method according to one of claims 1 to 4, wherein a front face of the substrate is formed with a functional device; and

wherein a rear face of the substrate is ground in the step of grinding the substrate. 25

A substrate dividing method according to claim

10

15

25

5, wherein the step of grinding the substrate includes a step of subjecting the rear face of the substrate to chemical etching.

7. A substrate dividing method comprising the steps5 of:

irradiating a substrate with laser light while positioning a light-converging point within the substrate under a condition with a peak power density of at least 1 \times 10 8 (W/cm²) at the light-converging point and a pulse width of 1 μs or less, so as to form a modified region including a crack region within the substrate, and causing the modified region to form a starting point region for cutting along a line along which the substrate should be cut in the substrate inside by a predetermined distance from a laser light incident face of the substrate; and

grinding the substrate after the step of forming the starting point region for cutting such that the substrate attains a predetermined thickness.

8. A substrate dividing method comprising the steps
20 of:

irradiating a substrate with laser light while positioning a light-converging point within the substrate under a condition with a peak power density of at least 1 \times 10 8 (W/cm²) at the light-converging point and a pulse width of 1 μs or less, so as to form a modified region including a molten processed region within the substrate, and causing

FP03-0042-00

the modified region to form a starting point region for cutting along a line along which the substrate should be cut in the substrate inside by a predetermined distance from a laser light incident face of the substrate; and

5

grinding the substrate after the step of forming the starting point region for cutting such that the substrate attains a predetermined thickness.

9. A substrate dividing method comprising the steps of:

10

irradiating a substrate with laser light while positioning a light-converging point within the substrate under a condition with a peak power density of at least 1 \times 10⁸ (W/cm²) at the light-converging point and a pulse width of 1 ns or less, so as to form a modified region including a refractive index change region which is a region with a changed refractive index within the substrate, and causing the modified region to form a starting point region for cutting along a line along which the substrate should be cut in the substrate inside by a predetermined distance from a laser light incident face of the substrate; and

20

15

grinding the substrate after the step of forming the starting point region for cutting such that the substrate attains a predetermined thickness.

25 of:

10.

A substrate dividing method comprising the steps

irradiating a substrate which is made of a semiconductor

5

10

15

20

25

FP03-0042-00

material with laser light while positioning a light-converging point within the substrate under a condition with a peak power density of at least 1×10^8 (W/cm²) at the light-converging point and a pulse width of 1 µs or less, so as to form a modified region within the substrate, and causing the modified region to form a starting point region for cutting along a line along which the substrate should be cut in the substrate inside by a predetermined distance from a laser light incident face of the substrate; and

grinding the substrate after the step of forming the starting point region for cutting such that the substrate attains a predetermined thickness.

11. A substrate dividing method comprising the steps of:

irradiating a substrate which is made of a piezoelectric material with laser light while positioning a light-converging point within the substrate under a condition with a peak power density of at least 1×10^8 (W/cm²) at the light-converging point and a pulse width of 1 µs or less, so as to form a modified region within the substrate, and causing the modified region to form a starting point region for cutting along a line along which the substrate should be cut in the substrate inside by a predetermined distance from a laser light incident face of the substrate; and

grinding the substrate after the step of forming the starting point region for cutting such that the substrate

FP03-0042-00

attains a predetermined thickness.

A substrate dividing method comprising the steps of:

irradiating a substrate which is made of a semiconductor light while positioning with laser material light-converging point within the substrate, so as to form a molten processed region within the substrate, and causing the molten processed region to form a starting point region for cutting along a line along which the substrate should be cut in the substrate inside by a predetermined distance from a laser light incident face of the substrate; and

grinding the substrate after the step of forming the starting point region for cutting such that the substrate attains a predetermined thickness.

10

5